Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            ABSTRACT The PRobe far-Infrared Mission for Astrophysics (PRIMA) concept aims to perform mapping with spectral coverage and sensitivities inaccessible to previous FIR space telescopes. PRIMA’s imaging instrument, PRIMAger, provides unique hyperspectral imaging simultaneously covering 25–235 µm. We synthesize images representing a deep, 1500 h deg−2 PRIMAger survey, with realistic instrumental and confusion noise. We demonstrate that we can construct catalogues of galaxies with a high purity (>95 per cent) at a source density of 42 k deg−2 using PRIMAger data alone. Using the XID+ deblending tool, we show that we measure fluxes with an accuracy better than 20 per cent to flux levels of 0.16, 0.80, 9.7, and 15 mJy at 47.4, 79.7, 172, and 235 µm, respectively. These are a factor of ∼2 and ∼3 fainter than the classical confusion limits for 72–96 and 126–235 µm, respectively. At $$1.5 \le z \le 2$$, we detect and accurately measure fluxes in 8–10 of the 10 channels covering 47–235 µm for sources with $$2 \lesssim \log ({\rm SFR}) \lesssim 2.5$$, a 0.5 dex improvement on what might be expected from the classical confusion limit. Recognizing that PRIMager will operate in a context where high-quality data will be available at other wavelengths, we investigate the benefits of introducing additional prior information. We show that by introducing even weak prior flux information when employing a higher source density catalogue (more than one source per beam), we can obtain accurate fluxes an order of magnitude below the classical confusion limit for 96–235 µm.more » « less
- 
            null (Ed.)In 2017, the Muon Hunter project on the Zooniverse.org citizen science platform successfully gathered more than two million classification labels for nearly 140,000 camera images from VER- ITAS. The aim was to select and parameterize muon events for use in training convolutional neural networks. The success of this project proved that crowdsourcing labels for IACT image analy- sis is a viable avenue for further development of advanced machine-learning algorithms. These algorithms could potentially lend themselves to improving class separation between gamma-ray and hadronic event types. Nonetheless, it took two months to gather these labels from volun- teers, which could be a bottleneck for future applications of this method. Here we present Muon Hunters 2.0: the follow-on project that demonstrates the development of unsupervised clustering techniques to gather muon labels more efficiently from volunteer classifiers.more » « less
- 
            Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02 − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1 − 0 1 ), (1 2 − 0 1 ), and (1 0 − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02 − 1 11 ) and (2 20 − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2 − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement of the total mass of molecular gas and an anchor for a CO excitation analysis. In addition, we present Hubble Space Telescope imaging that reveals the foreground lensing galaxy in the near-infrared (1.15 μ m). Together with photometric data from the Gran Telescopio Canarias, we derive a photometric redshift of z phot = 0.9 −0.5 +0.3 for the foreground lensing galaxy. Modeling the lensing of HerBS-89a, we reconstruct the dust continuum (magnified by a factor μ ≃ 5.0) and molecular emission lines (magnified by μ ∼ 4 − 5) in the source plane, which probe scales of ∼0 . ″1 (or 800 pc). The 12 CO(9 − 8) and H 2 O(2 02 − 1 11 ) emission lines have comparable spatial and kinematic distributions; the source-plane reconstructions do not clearly distinguish between a one-component and a two-component scenario, but the latter, which reveals two compact rotating components with sizes of ≈1 kpc that are likely merging, more naturally accounts for the broad line widths observed in HerBS-89a. In the core of HerBS-89a, very dense gas with n H 2 ∼ 10 7 − 9 cm −3 is revealed by the NH 2 emission lines and the possible HCN(11 − 10) absorption line. HerBS-89a is a powerful star forming galaxy with a molecular gas mass of M mol = (2.1 ± 0.4) × 10 11 M ⊙ , an infrared luminosity of L IR = (4.6 ± 0.4) × 10 12 L ⊙ , and a dust mass of M dust = (2.6 ± 0.2) × 10 9 M ⊙ , yielding a dust-to-gas ratio δ GDR ≈ 80. We derive a star formation rate SFR = 614 ± 59 M ⊙ yr −1 and a depletion timescale τ depl = (3.4 ± 1.0) × 10 8 years. The OH + and CH + absorption lines, which trace low (∼100 cm −3 ) density molecular gas, all have their main velocity component red-shifted by Δ V ∼ 100 km s −1 relative to the global CO reservoir. We argue that these absorption lines trace a rare example of gas inflow toward the center of a galaxy, indicating that HerBS-89a is accreting gas from its surroundings.more » « less
- 
            We report the discovery of a complete Einstein ring around the elliptical galaxy NGC 6505, atz = 0.042. This is the first strong gravitational lens discovered inEuclidand the first in an NGC object from any survey. The combination of the low redshift of the lens galaxy, the brightness of the source galaxy (IE = 18.1 lensed,IE = 21.3 unlensed), and the completeness of the ring make this an exceptionally rare strong lens, unidentified until its observation byEuclid. We present deep imaging data of the lens from theEuclidVisible Camera (VIS) and Near-Infrared Spectrometer and Photometer (NISP) instruments, as well as resolved spectroscopy from theKeckCosmic Web Imager (KCWI). TheEuclidimaging in particular presents one of the highest signal-to-noise ratio optical/near-infrared observations of a strong gravitational lens to date. From the KCWI data we measure a source redshift ofz = 0.406. Using data from the Dark Energy Spectroscopic Instrument (DESI) we measure a velocity dispersion for the lens galaxy ofσ⋆ = 303 ± 15 km s−1. We model the lens galaxy light in detail, revealing angular structure that varies inside the Einstein ring. After subtracting this light model from the VIS observation, we model the strongly lensed images, finding an Einstein radius of 2.″5, corresponding to 2.1 kpc at the redshift of the lens. This is small compared to the effective radius of the galaxy,Reff ∼ 12.″3. Combining the strong lensing measurements with analysis of the spectroscopic data we estimate a dark matter fraction inside the Einstein radius offDM = (11.1−3.5+5.4)% and a stellar initial mass-function (IMF) mismatch parameter ofαIMF = 1.26−0.08+0.05, indicating a heavier-than-Chabrier IMF in the centre of the galaxy.more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we conducted a program to measure redshifts for 13 bright galaxies detected in the Herschel Astrophysical Large Area Survey with S 500 μ m ≥ 80 mJy. We report reliable spectroscopic redshifts for 12 individual sources, which are derived from scans of the 3 and 2 mm bands, covering up to 31 GHz in each band, and are based on the detection of at least two emission lines. The spectroscopic redshifts are in the range 2.08 < z < 4.05 with a median value of z = 2.9 ± 0.6. The sources are unresolved or barely resolved on scales of 10 kpc. In one field, two galaxies with different redshifts were detected. In two cases the sources are found to be binary galaxies with projected distances of ∼140 kpc. The linewidths of the sources are large, with a mean value for the full width at half maximum of 700 ± 300 km s −1 and a median of 800 km s −1 . We analyze the nature of the sources with currently available ancillary data to determine if they are lensed or hyper-luminous ( L FIR > 10 13 L ⊙ ) galaxies. We also present a reanalysis of the spectral energy distributions including the continuum flux densities measured at 3 and 2 mm to derive the overall properties of the sources. Future prospects based on these efficient measurements of redshifts of high- z galaxies using NOEMA are outlined, including a comprehensive survey of all the brightest Herschel galaxies.more » « less
- 
            We present images obtained with LABOCA on the APEX telescope of a sample of 22 galaxies selected via their red Herschel SPIRE 250-, 350- and $$500\textrm{-}\mu\textrm{m}$$ colors. We aim to see if these luminous, rare and distant galaxies are signposting dense regions in the early Universe. Our $$870\textrm{-}\mu\textrm{m}$$ survey covers an area of $$\approx0.8\,\textrm{deg}^2$$ down to an average r.m.s. of $$3.9\,\textrm{mJy beam}^{-1}$$, with our five deepest maps going $$\approx2\times$$ deeper still. We catalog 86 DSFGs around our 'signposts', detected above a significance of $$3.5\sigma$$. This implies a $$100\pm30\%$$ over-density of $$S_{870}>8.5\,\textrm{mJy}$$ DSFGs, excluding our signposts, when comparing our number counts to those in 'blank fields'. Thus, we are $$99.93\%$$ confident that our signposts are pinpointing over-dense regions in the Universe, and $$\approx95\%$$ confident that these regions are over-dense by a factor of at least $$\ge1.5\times$$. Using template SEDs and SPIRE/LABOCA photometry we derive a median photometric redshift of $$z=3.2\pm0.2$$ for our signposts, with an interquartile range of $$z=2.8\textrm{-}3.6$$. We constrain the DSFGs likely responsible for this over-density to within $$|\Delta z|\le0.65$$ of their respective signposts. These 'associated' DSFGs are radially distributed within $$1.6\pm0.5\,\textrm{Mpc}$$ of their signposts, have median SFRs of $$\approx(1.0\pm0.2)\times10^3\,M_{\odot}\,\textrm{yr}^{-1}$$ (for a Salpeter stellar IMF) and median gas reservoirs of $$\sim1.7\times10^{11}\,M_{\odot}$$. These candidate proto-clusters have average total SFRs of at least $$\approx (2.3\pm0.5)\times10^3\,M_{\odot}\,\textrm{yr}^{-1}$$ and space densities of $$\sim9\times10^{-7}\,\textrm{Mpc}^{-3}$$, consistent with the idea that their constituents may evolve to become massive ETGs in the centers of the rich galaxy clusters we see today.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available